Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 53: 107840, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606949

RESUMO

Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.


Assuntos
Técnicas Biossensoriais , Receptores Odorantes , Animais , Proteínas de Insetos , Insetos , Odorantes , Receptores Odorantes/genética , Olfato
2.
Talanta ; 209: 120581, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892020

RESUMO

Conjugated polyelectrolytes (CPEs) have been widely used as reporters in colorimetric assays targeting nucleic acids. CPEs provide naked eye detection possibility by their superior optical properties however, as concentration of target analytes decrease, trace amounts of nucleic acid typically yield colorimetric responses that are not readily perceivable by naked eye. Herein, we report a pixelated analysis approach for correlating colorimetric responses of CPE with nucleic acid concentrations down to 1 nM, in plasma samples, utilizing a smart phone with an algorithm that can perform analytical testing and data processing. The detection strategy employed relies on conformational transitions between single stranded nucleic acid-cationic CPE duplexes and double stranded nucleic acid-CPE triplexes that yield distinct colorimetric responses for enabling naked eye detection of nucleic acids. Cationic poly[N,N,N-triethyl-3-((4-methylthiophen-3-yl)oxy)propan-1-aminium bromide] is utilized as the CPE reporter deposited on a polyvinylidene fluoride (PVDF) membrane for nucleic acid assay. A smart phone application is developed to capture and digitize the colorimetric response of the individual pixels of the digital images of CPE on the PVDF membrane, followed by an analysis using the algorithm. The proposed pixelated approach enables precise quantification of nucleic acid assay concentrations, thereby eliminating the margin of error involved in conventional methodologies adopted for interpretation of colorimetric responses, for instance, RGB analysis. The obtained results illustrate that a ubiquitous smart phone could be utilized for point of care colorimetric nucleic acids assays in complex matrices without requiring sophisticated software or instrumentation.


Assuntos
Colorimetria/métodos , Ácidos Nucleicos/sangue , Polieletrólitos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Cátions/química , Colorimetria/instrumentação , Desenho de Equipamento , Humanos , Ácidos Nucleicos/análise , Papel , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química , Polivinil/química , Smartphone , Tiofenos/química
3.
Anal Chim Acta ; 1066: 102-111, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31027524

RESUMO

A flow-through colorimetric assay for detection of nucleic acids in plasma is reported. The proposed assay features an array of four polyvinylidene fluoride (PVDF) membranes impregnated with cationic poly (3-alkoxy-4-methylthiophene) (PT) as an optical reporter. The sensing strategy is based on monitoring the changes in optical properties of PT, upon complexation with target nucleic acids in the presence and in the absence of their corresponding complementary peptide nucleic acids (PNAs). As a proof of concept, the proposed methodology is validated using two biomarkers; lung cancer associated microRNA (mir21) and hepatitis B virus DNA (HBV-DNA). The flow-through colorimetric assay enabled detection of mir21 and HBV-DNA in plasma without requiring tedious sample pre-treatment and clean up protocols. Colorimetric responses for mir21 and HBV-DNA were obtained at nanomolar concentrations over five orders of magnitudes (from 1 nM to 10 µM), with a limit of detection of ∼0.6 nM and ∼2 nM in DI water and plasma, respectively. A logic gate system was developed to utilize the colorimetric assay responses as inputs for discrimination of mir21 and HBV-DNA and subsequently to obtain a profile of nucleic acids in samples that exceed respective clinical threshold limits, thereby enabling rapid and point of care (POC) disease diagnosis. Furthermore, the proposed methodology can be utilized for detection of a large number of nucleic acids in plasma by extending the array of PT impregnated membranes incorporated with their corresponding complementary PNAs.


Assuntos
Colorimetria , DNA Viral/sangue , MicroRNAs/sangue , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
4.
ACS Appl Mater Interfaces ; 8(13): 8349-57, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26956217

RESUMO

Here we report on the design and synthesis of cationic water-soluble thiophene copolymers as reporters for colorimetric detection of microRNA (miRNA) in human plasma. Poly(3-alkoxythiophene) (PT) polyelectrolytes with controlled ratios of pendant groups such as triethylamine/1-methyl imidazole were synthesized for optimizing interaction with target miRNA sequence (Tseq). Incorporation of specific peptide nucleic acid (PNA) sequences with the cationic polythiophenes yielded distinguishable responses upon formation of fluorescent PT-PNA-Tseq triplex and weakly fluorescent PT-Tseq duplex, thereby enabling selective detection of target miRNA. Unlike homopolymers of PT (hPT), experimental results indicate the possibility of utilizing copolymers of PT (cPT) with appropriate ratios of pendant groups for miRNA assay in complex matrices such as plasma. As an illustration, colorimetric responses were obtained for lung cancer associated miRNA sequence (mir21) in human plasma, with a detection limit of 10 nM, illustrating the feasibility of proposed methodology for clinical applications without involving sophisticated instrumentation. The described methodology therefore possesses high potential for low-cost nucleic acid assays in resource-limited settings.


Assuntos
Neoplasias Pulmonares/sangue , MicroRNAs/sangue , Ácidos Nucleicos Peptídicos/química , Polímeros/química , Tiofenos/química , Sequência de Bases/genética , Cátions , Colorimetria , Humanos , Limite de Detecção , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/isolamento & purificação
5.
Analyst ; 140(23): 7912-7, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26478920

RESUMO

A novel approach for miRNA assay using a cationic polythiophene derivative, poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrobromide] (PT), immobilized on a quartz resonator is proposed. The cationic PT enables capturing of all RNA sequences in the sample matrix via electrostatic interactions, resulting in the formation of PT-RNA duplex structures on quartz resonators. Biotinylated peptide nucleic acid (b-PNA) sequences are subsequently utilized for the RNA assay, upon monitoring the PT-RNA-b-PNA triplex formation. Signal amplification is achieved by anchoring avidin coated nanoparticles to b-PNA in order to yield responses at clinically relevant concentration regimes. Unlike conventional nucleic acid assay methodologies that usually quantify a specific sequence of RNA, the proposed approach enables the assay of any RNA sequence in the sample matrix upon hybridization with a PNA sequence complementary to the RNA of interest. As an illustration, successful detection of mir21, (a miRNA sequence associated with lung cancer) is demonstrated with a limit of detection of 400 pM. Furthermore, precise quantification of mir21 in plasma samples is demonstrated without requiring PCR and sophisticated instrumentation.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/análise , MicroRNAs/isolamento & purificação , Polímeros/química , Quartzo/química , Tiofenos/química , Humanos , MicroRNAs/sangue , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...